40 Gbps Links using Plastic Optical Fiber

Stephen E. Ralph

Arup Polley Kasyapa Balemarthy

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia

Work supported by

Plastic optical fiber

- Emerging medium for very short reach links
- Connectorization simplicity
- Low bending loss
- Attenuation
 - < 50dB/km, less than 30 demonstrated</p>
- Bandwidth ??

Launch insensitive: Differential modal delay (DMD) ~2ps peak-to-peak for 200m

Large bandwidth: 40Gbps capability for >100m links

Georgia Institute

	Chromis GigaPOF50SR	Chromis GigaPOF120SR	Lucina	Optimedia	Mitsubishi
Material	Perflourinated Graded Index (GI-PF)	Perflourinated Graded Index (GI-PF)	Perflourinated graded Index (GI-PF)	Polymethyl Methacrylate Graded Index (GI-PMMA)	PloyMethyl Methacrylate Step index (SI-PMMA)
Numerical Aperture (NA)	0.19	0.185	0.185	0.23-0.3	0.5
	+/- 0.015	+/- 0.015	+/-0.01		
Core/ Cladding Diameter (µm)	50/490	120/490	120/492	1000/2200	980/1000
	+/- 5	+/- 10/7	+/- 10/3	+/- 5%	+/- 60
Attenuation (dB/km) @850nm	<50	<60	<40	<200	<200
@ 1300nm	<60	<60		<4000	<4000
Specified Bandwidth	>300MHz- km @850nm	>300MHz- km @850nm	>940MHz x200m @850nm	Dependent on NA	

Detector limited by core size

 High-speed large core media are limited by the requirement to couple the large core fiber to a sufficiently small detector

Trade-off

- Tolerance of larger diameter POF
- Coupling efficiency of POF to photodetector
- Bandwidth of larger diameter detector
- 10 Gbps operation: core diam. < 150μm
- 40 Gbps operation: core diam. < 50μm

Georgia Institute

Speckle pattern after 200m

POF link set up

Impulse response measurement at 800nm and 1550nm

- Transmitter
 - > 800nm, 16 ps: Ti-sapphire
 - > 1550nm, 16 ps: mode-locked fiber laser
- Receiver
 - 800nm and 1550nm: commercial MMF PIN photodetector (Newfocus 1454) and digital sampling scope (Tektronix: TDS8200)

Link measurement at 1550nm

- Transmitter
 - > 40Gbps PRBS data source
- Receiver
 - Commercial MMF PIN photodetector (Newfocus 1454) and 38GHz post-amp

200m impulse response (800nm)

Georgia Institute of Technology

Linear scale

Log scale

- 200m 50μm core GI PF-POF
 - GIPOF50-SR from Chromis Fiberoptics
- Sufficient bandwidth for 40Gbps?

Frequency response

Deconvolved response: ~29 ps FWHM

- Primarily detector limited response
- Channel insertion loss including connectorization: 8 dB

Frequency response

Deconvolved impulse response

- 200m power penalty using the deconvolved response
 - ➢ 30 Gbps: 4 dB
 - ➢ 40 Gbps: 10 dB
- 100m power penalty
 - ➢ 40 Gbps: <4 dB</p>

120µm core POF

• 20m 120µm core GI PF-POF

Detector bandwidth limited response

Launch insensitivity

- Differential modal delay: 2 ps peak-to-peak
- Attenuation at larger offsets
 - Coupling to leaky modes
- Bandwidth is independent of launched mode power distribution
 - High offset tolerance
 - Tolerant of multimode sources

- High Bandwidth
- Launch insensitive
- Gaussian-like response

MODE COUPLING

Mode coupling in glass fiber

- Impulse response with high temporal resolution and high dynamic range
- Low coupling in glass fiber allows the direct time domain assessment

Georgia Institute

Mode coupling

Strong modal coupling insures all photons behave equally i.e. group delay is uniform

- Mode coupling coefficient
 - ➢ Glass MMF: 0.15 km⁻¹
 - ➢ GI-POF: 5 m⁻¹
 - 4-5 orders larger

• Effects

- Reaches complete mode coupling regime i.e. steady-state mode power distribution
- Large bandwidth
- Low DMD
- > Bandwidth $\propto 1/\sqrt{\text{Fiber length}}$

Ref: K. Balemarthy, A. Polley, and S. E. Ralph, "Electronic Equalization of Multi-km 10Gb/s Multi-Mode Fiber Links: Mode Coupling Effects," *J. Lightwave Tech* Dec. 2006.

Pulse Width

- POF is strongly coupled
 - Anticipate near Gaussian response for short fibers
- What is the MPD as the length increases?

Temporal and Mode Distribution

DMD

Mode Power Distribution

1.7x10⁻⁵ Increasing Coupling 0.17

5m⁻¹

Georgia Institute of Technology

DMD and Mode Coupling

- Dependence of DMD on mode coupling coefficient
- Reported mode coupling length
 ~ 10-100 m
- Without coupling a tolerance is much tighter than ±0.1
- With strong coupling tolerance is increased by order of magnitude

Georgia Institute of Technology

10 Gbps Index Tolerance

- Sensitivity of the power penalty on refractive index profile
- Strong coupling allows relatively large index profile tolerance
 - > 300m tolerates
 α=2.0 ±0.12
 - > 100m tolerates α =2.0 ±0.3

Georgia Institute of Technology

10Gbps Tolerance to Mixed α

Penalty is more sensitive to α₂

- Modal delays of higher order modes are more strongly dependent on α₂
- Mode degeneracy is larger for higher order modes

40Gbps Index Tolerance

 Manageable tolerance is required for 40 Gbps links

40 Gbps Mixed α

 Similar sensitivity on α₂₁

OFC 2007

POF links at 1550nm

- Optimum operating window: 850 and 1300 nm
- Channel bandwidth is λ independent

30m links: 1550nm

20 Gbps

30 Gbps

40 Gbps

- Completely open eye for 20 Gbps and 30 Gbps
- Eye at 40 Gbps: receiver bandwidth limited

Eye at different offsets for 30 Gbps

- ISI power penalty at BER of 10⁻⁹
 - ➢ 10 Gbps: 0.6 dB
 - ➢ 20 Gbps: 0.6 dB
 - ➢ 30 Gbps: 1.5 dB
- ISI penalty = Measured power penalty Coupling loss
 - > Coupling loss from 50μ m POF to detector = 2.5 dB

VCSEL and 120µm core POF

Chromis

Lucina

- Transmitter: 10 Gbps VCSEL
- 20m 120 μ m core GI PF-POF

- Quantitatively explained large bandwidth in POF
- Demonstration of launch insensitivity
- First demonstration of 40 Gbps capability in POF links
- First demonstration of 30 Gbps error free transmission in POF links